Weighted Norm Inequalities for Spectral Multipliers without Gaussian Estimates

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multipliers and weighted ∂-estimates

We study estimates for the solution of the equation ∂u = f in one variable. The new ingredient is the use of holomorphic functions with precise growth restrictions in the construction of explicit solutions to the equation.

متن کامل

Weighted Norm Inequalities for Calderón-zygmund Operators without Doubling Conditions

Abstract Let μ be a Borel measure on R which may be non doubling. The only condition that μ must satisfy is μ(B(x, r)) ≤ Cr for all x ∈ R, r > 0 and for some fixed n with 0 < n ≤ d. In this paper we introduce a maximal operator N , which coincides with the maximal Hardy-Littlewood operator if μ(B(x, r)) ≈ r for x ∈ supp(μ), and we show that all n-dimensional Calderón-Zygmund operators are bound...

متن کامل

Weighted Norm Inequalities , off - Diagonal Estimates and Elliptic Operators Pascal

We give an overview of the generalized Calderón-Zygmund theory for “non-integral” singular operators, that is, operators without kernels bounds but appropriate off-diagonal estimates. This theory is powerful enough to obtain weighted estimates for such operators and their commutators with BMO functions. L − L off-diagonal estimates when p ≤ q play an important role and we present them. They are...

متن کامل

Weighted Norm Inequalities

Introduction In the rst part of the paper we study integral operators of the form (1) Kf(x) = v(x) x Z 0 k(x; y)u(y)f(y) dy; x > 0; where the real weight functions v(t) and u(t) are locally integrable and the kernel k(x; y) 0 satisses the following condition: there exists a constant D 1 such that Standard examples of a kernel k(x; y) 0 satisfying (2) are (i) k(x; y) = (x ? y) , 0 (ii) k(x; y) =...

متن کامل

Weighted norm estimates and Lp-spectral independence of linear operators

We investigate the Lp-spectrum of linear operators defined consistently on Lp(Ω) for p0 ≤ p ≤ p1, where (Ω, μ) is an arbitrary σ-finite measure space and 1 ≤ p0 < p1 ≤ ∞. We prove p-independence of the Lp-spectrum assuming weighted norm estimates. The assumptions are formulated in terms of a measurable semi-metric d on (Ω, μ); the balls with respect to this semi-metric are required to satisfy a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Tokyo Journal of Mathematics

سال: 2014

ISSN: 0387-3870

DOI: 10.3836/tjm/1422452798